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SUMMARY

Hybrid grids consisting of prisms and tetrahedra are employed for the solution of the 3-D Navier–Stokes
equations of incompressible flow. A pressure correction scheme is employed with a finite volume–finite
element spatial discretization. The traditional staggered grid formulation has been substituted with a
collocated mesh approach which uses fourth-order artificial dissipation. The hybrid grid is refined
adaptively in local regions of appreciable flow variations. The scheme operations are performed on an
edge-wise basis which unifies treatment of both types of grid elements. The adaptive method is employed
for incompressible flows in both single and multiply-connected domains. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the past two decades a significant number of numerical algorithms have been
developed for the solution of the incompressible Navier–Stokes equations and a few major
issues have arisen from these studies. The lack of a pressure term in the continuity equation
makes the momentum equations with the divergence-free constraint more difficult to solve [1].
Furthermore, non-staggered spatial discretization of the pressure and velocity fields may
produce oscillatory solutions, which has traditionally led to the use of staggered grids [2,3].
However, the use of staggered grids can be quite complex for locally refined grids which also
employ mixed elements. Thus, the employment of a non-staggered grid which has velocity and
pressure values stored at the same locations affords more flexibility, but requires artificial
dissipation to eliminate oscillations.

A final issue regarding numerical methods for incompressible flow relates to the topology of
the computational grid, especially for three-dimensional bodies. The generation of a structured
hexahedral grid for complex geometries can be difficult [4]. Unstructured tetrahedral grids
provide flexibility in three-dimensional grid generation because they can cover complicated
topologies more easily than the hexahedral meshes. Substantial progress is currently being
made in large scale viscous flow computations on complex three-dimensional geometries using
compressible flow solvers. However, there has been very little analogous work using incom-
pressible viscous flow solvers. The proposed mesh methodology [5,6] provides an alternative
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approach to generate suitable grids for Navier–Stokes computations through the use of
prismatic elements, as shown in Figure 1. The prisms permit the use of sufficient grid clustering
in the normal direction, as well as flexibility in covering complex surfaces using their triangular
faces. Prismatic data structures also require considerably less memory storage compared with
tetrahedral data structures [7]. The hybrid mesh incorporates both prismatic and tetrahedral
elements [5]. The prismatic cells are used close to the body surfaces and fill only a small
fraction of the computational domain. Since unstructured grids have the capability to fill
irregular regions, the remaining portion of the domain is tessellated with tetrahedra which are
generated starting from the triangulation of the outermost surface of the prismatic region.

A popular category of algorithms used to solve incompressible flows is the pressure
correction method. The usual computational procedure for pressure correction methods is to
assume an initial pressure and velocity field, and then iterate until the continuity equation is
satisfied. The present work focuses on the application of an edge-based pressure correction
method using adaptive hybrid grids for the solution of the incompressible Navier–Stokes
equations. The employment of adaptive hybrid grids introduces the following issues which are
examined in the present work:

� Creation of a single algorithm for grids of mixed elements (prisms–tetrahedra).
� Stability of the pressure correction method with adaptive grids consisting of mixed elements.
� Stability of the pressure correction method in the presence of two different types of

interfaces; the prismatic–tetrahedral interface, as well as the interfaces between different
embedded grids.

� Effect of the various interfaces on solution accuracy.
� Employment of explicit artificial dissipation for stability instead of the more traditional

approach of staggered grids.

The results presented discretize the flow domain using a non-staggered hybrid grid, compris-
ing of both prismatic and tetrahedral elements. The implementation of edge-based operations
makes the use of these hybrid elements transparent to the algorithm. Explicit artificial
dissipation is shown to eliminate oscillations incurred by not using the staggered grid
approach. Additionally, a hybrid grid adaptation scheme is implemented using local mesh
refinement. The pressure correction method is shown to be stable in the presence of the
prism–tetrahedra interface, as well as the interfaces between different embedded grids. The
local adaptation scheme is also shown to be advantageous, yielding accurate results with
reduced computing resources.

2. THE PRESSURE CORRECTION METHOD

The governing Navier–Stokes equations are normalized by a characteristic length (L) and the
freestream speed (U�). The terms in the equations are rearranged into inviscid, viscous, and
source terms. The non-dimensional Navier–Stokes equations in three dimensions can be
written in Cartesian co-ordinates in differential form:

(U
(t

+
((FI−FV)
(x

+
((GI−GV)
(y

+
((HI−Hv)
(z

=S. (1)

The state vector U, the convective flux vectors FI, GI, HI, the viscous flux vectors FV, GV, HV,
and the source term S are expressed in terms of the non-dimensional primitive variables.
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An explicit–implicit marching scheme is adopted for the time integration of equations (1).
The velocity values are marched in time with a forward Euler scheme [8]. The continuity
equation is formulated implicitly with the velocity values considered at time level (n+1).
Specifically, the corresponding semi-discrete system is written as follows, where the superscripts
denote the time levels.

UT= (0 un+1 6n+1 wn+1), (2)

FI
T= (un+1 unun un6n unwn), (3)
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The Reynolds number, Re, is equal to r�U�L/m�, where m� is the freestream viscosity.
Equations (1)–(9) cannot be solved directly due to the implicit treatment of the pressure

term. An auxiliary velocity vector U%T= (0 u % 6 % w %) is introduced, and is written in a similar
non-dimensional state vector formulation used previously:

(U%
(t

+
((FI−FV)
(x

+
((GI−GV)
(y

+
((HI−Hv)
(z

=0. (10)

However, the auxiliary velocity field, u� %, does not satisfy the continuity equation. Subtracting
Equation (10) from the momentum Equations (1)–(9) and rewriting in primitive variables,
yields:

u� (n+1)−u� %= [9p (n+1)]Dt. (11)

Introducing a scalar potential, f, such that

u� (n+1)−u� %= −9f, (12)

the following equation for pressure can be obtained:

p (n+1)=
1
Dt

f. (13)

Finally, taking the divergence of each side of Equation (12) and considering the continuity
equation, the following pressure correction Poisson equation is obtained. Finite element
discretization of the Poisson equation is used.

92f=9 ·u� %. (14)

Using the f values obtained by Equation (14), we can correct the velocity and pressure fields
using Equations (12) and (13) as follows:
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u� (n+1)=u� %−9f, (15)

p (n+1)=
1
Dt

f. (16)

The overall solution procedure corresponding to marching by one time step is summarized
as follows:

1. Calculate the auxiliary velocity vector u� % from (10) using u� (n) values.
2. Solve the pressure correction Poisson Equation (14) and obtain the f values.
3. Correct the pressure and velocity at time step n+1 using Equations (15) and (16).

3. FINITE VOLUME SPATIAL INTEGRATION FOR MIXED ELEMENTS

The present 3-D numerical method uses a non-staggered cell-vertex scheme. In addition, a
node-centered dual cell is defined, which represents the control volume over which the integral
averages of the governing equations are evaluated. The two-dimensional analogy of defining
node-centered dual cells for different situations in a triangular-quadrilateral hybrid mesh is
illustrated in Figure 2. Node-centered dual cells are defined by connecting the mid-points of
the edges and centroids of the triangular and/or quadrilateral faces that share the node.
Node-centered dual cells for a three-dimensional hybrid grid are constructed along similar
lines, using the centroids of faces and cells associated with each node.

3.1. Spatial integration

The Navier–Stokes equations of incompressible viscous flow are given in integral form for
a bounded three-dimensional domain V as follows:&

V

�(U
(t

+
�((FI−FV)

(x
+
((GI−GV)
(y

+
((HI−HV)
(z

�n
dV=

&
V

S dV. (17)

The state, flux and source vectors have been previously defined in Equations (2)–(9).
In the finite volume approach, the volume integral containing the spatial derivatives of the

inviscid and viscous flux vectors in Equation (17) is transformed to a surface integral using the
divergence theorem.&

V

�(U
(t

−S
n

dV+
&
(V

[(FI−FV)nx+ (GI−GV)ny+ (HI−HV)nz ] dS=0. (18)

The surface integral of Equation (18), is rewritten in discrete form on an edge-wise basis,

%
e

[(FI−FV)Sx+ (GI−GV)Sy+ (HI−HV)Sz ]e, (19)

where the summation is over all the edges; Sx, Sy, Sz are the area-projections of the dual faces
associated with each edge e in the corresponding co-ordinate directions. The flux vectors are
required at the center of the edge e and their values are obtained by averaging the values at
the two nodes of each edge. Since the flux summation is over the edges, it is transparent to the
scheme whether a node lies in the tetrahedral region, prismatic region, or at the interface. The
viscous flux vectors FV, GV and HV of Equation (18) contain the gradients of the velocities that
need to be calculated at the edge centers. For this calculation, another conceptual dual cell is
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used. The two-dimensional analogy of this cell is shown in Figure 3. The edge-centered dual
cell is composed of all the cells which share the edge. Once the first-order derivatives of the
terms FV, GV and HV have been calculated, the viscous terms are evaluated at the nodes.

Figure 1. Semi-unstructured prismatic topology. (The unstructured boundary surface is shaded.)

Figure 2. 2-D analogies for node-centered dual areas in the (a) prismatic region; (b) tetrahedral–prismatic interface;
and (c) tetrahedral region.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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In the present central space and forward time differenced scheme, a combination of the
convective and diffusion stability limitations is employed. Specifically,

Dt=
v ·Vi

�uiSix �+ �6iSiy �+ �wiSiz �+2 ·Vi/(Re(�Six �+ �Siy �+ �Siz �)), (20)

where Vi is the dual volume corresponding to node i, ui, 6i and wi are the velocities at node i,
Six, Siy and Siz are the projected areas of the faces of the dual cell corresponding to node i, and
v is the CFL number.

3.2. Boundary conditions

The velocity components are set equal to zero at the wall, while the derivative of the scalar
potential, (f/(n, is also equal to zero. The far field boundary conditions set the velocity to be
equal to the freestream velocity, and (f/(n to be equal to zero. At symmetry boundaries, the
tangential components of the velocity at the center of the boundary cell are projected to the
cell faces on the symmetry boundary. Furthermore, the normal component of the velocity on
a symmetry boundary is set to zero and (f/(n is also set to zero. Note that the use of all
Neumann boundary conditions for the scalar potential f admits floating of the Poisson
solution. Consequently, the present scheme sets f equal to zero at one far field location to
ensure uniqueness of the solution [9].

Implementation of the Neumann boundary conditions for the scalar potential and velocity
components is complicated by the use of hybrid grids. Unlike fully structured meshes where
boundary information can be easily related to neighboring nodes, hybrid meshes require
careful extrapolation based on the type of boundary element incurred. When a prismatic or
tetrahedral cell is on a Neumann boundary, the cell center value of f is extrapolated to the
center of the boundary face. This face center value is then distributed to the face nodes. The
nodal distribution uses weighting factors which are inversely proportional to the distance of
the face node from the face center. Therefore, the closer the face node is to the face center, the
greater the distribution the face node will receive. Illustration of the extrapolation process for
a tetrahedral boundary cell is shown in Figure 4.

3.3. Artificial dissipation

Central space differencing schemes are susceptible to oscillatory modes in the velocity field.
Furthermore, odd–even decoupling of the solution may appear in the pressure field when a
non-staggered type of mesh is employed. To stabilize the calculations for high Reynolds
number flows, artificial dissipation is often used. In the present work, a fourth-order smooth-
ing term is added explicitly to the momentum equations [10]. The smoothing operator is
edge-based and cast in a form suitable for adaptive unstructured grids. Consider an edge
formed by the nodes L and R. The first differences of the state vector (dU)2 are evaluated as
follows:

(dUL)2= %
n

e=1

(UR−UL), (21)

where e denotes the edges sharing node L. The fourth-order smoothing contribution is
computed in a similar fashion. Instead of the first difference of state vectors, as used in
Equation (21), a difference of the accumulated first difference over the edges sharing a node is
used. The fourth-order difference is scaled by the time step at node L, Dt and the node volume,
VL, as follows:
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Figure 3. 2-D analogies for edge-centered dual areas in the (a) prismatic region; (b) tetrahedral–prismatic interface;
and (c) tetrahedral region.

Figure 4. Illustration of far field boundary conditions for a hybrid mesh: assigning the cell center value to the
tetrahedral face center, and distributing the face center value to the face nodes.

(dUL)4= −s4

Dt
VL

%
n

e=1

[(dUR)2− (dUL)2]. (22)

The coefficient s4 is the artificial dissipation factor, the value of which is empirically chosen
such that the solution accuracy is not affected [11].

3.4. A priori e6aluation of mesh quality

Evaluation of the mesh quality is made initially without having to solve the Navier–Stokes
equations. Mesh quality estimates have been used in the past, however, these are often
inappropriate for viscous type grids. In contrast, analytic field functions offer an attractive
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method for evaluating the suitability of the prismatic–tetrahedral mesh, as well as spatial
accuracy of the finite volume scheme. In this section, mesh qualities are evaluated by
comparing the analytic results of the field function with values obtained by applying the
divergence and viscous calculations of the numerical scheme to the same field function.

The divergence calculation is tested using the vector U= (x+y+z)i. + (x+y+z)j. + (x+
y+z)k. . The error of the numerical solution is defined as Error= �(9 ·Unumerical−9 ·Uanalytic/
9 ·Uanalytic)�. Two different meshes are considered, an all-prisms grid and a hybrid mesh. Figure
5 shows the error distribution over the nodes for the two grids. It is observed that the majority
of the nodes in the prismatic mesh have an error of B1.0%. The maximum error for this mesh
was 1.8%. The majority of the nodes in the hybrid mesh have errors B0.1%.

The effect of grid size on accuracy is demonstrated with three prismatic meshes around a
sphere. Two different types of calculations are considered. The first is the evaluation of the
divergence 9 ·U using the previous linear field function, while the second is evaluation of the
Laplacian, 92U, using the parabolic function U=x2+y2+z2. Each coarse prism cell is
subdivided into eight prism cells in order to construct the medium mesh. The fine mesh is
created from the medium mesh using the same refinement principle. The RMS error distribu-
tion of the divergence and viscous calculations using the coarse, medium and fine grids are
shown in Figure 6. The slope of the log–log plot for both calculations is approximately equal
to two, which indicates second-order spatial accuracy.

4. ADAPTIVE HYBRID GRIDS

Adaptive embedding for the prismatic grid is accomplished by division of the triangular
surface faces. The height of the prismatic cells normal to the surface faces is unaltered. This
type of directional adaptation increases the lateral resolution of the grid, and does not destroy
the structure of the prismatic mesh. The subdivision principle is illustrated in Figure 7. A
triangle can be subdivided into two triangles (binary division) or it can be divided into four
triangles (quad division). A triangular face with two or three of its edges flagged for division
will be divided into four subfaces. If only one edge is flagged, division into two subfaces will
occur.

Tetrahedral cells fill the portion of the domain away from the wall surfaces. The tetrahedra
are refined into two, four, or eight subcells, corresponding to binary, quadtree and octree
division [7]. The tetrahedral cells created by the isotropic octree division have an aspect ratio
that is comparable with that of the parent cell, whereas the directional binary and quadtree
divisions result in skewed cells. To avoid excessive grid skewness, repeated binary and quadtree
divisions of tetrahedra that originated from such a refinement in a previous pass are avoided.
Furthermore, to avoid sudden changes in grid size, the grid refinement algorithm limits the
ratio in embedding level between neighboring cells to 2:1.

The hybrid adaptation is completed by coupling the refined prismatic and tetrahedral grids
together at the interface. The feature detectors that flag the edges in the prismatic and
tetrahedral regions function independently, therefore, the following situations may occur: (i) an
edge on the wall surface may be flagged for refinement but its counterpart in the tetrahedral
region may not have been flagged by the tetrahedral feature detector, and (ii) a tetrahedral
edge may be flagged for refinement, but its footprint on the wall may not have been flagged by
the prismatic feature detector. In the previous cases, mid-edge nodes (hanging) nodes will
appear, which would then require special treatment by the solver. Hanging nodes are avoided
by flagging both cells of a prism–tetrahedron pair at the interface, if at least one cell is flagged
for division.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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The success of spatial grid adaptation is dependent upon the feature detection algorithm.
The feature detector needs to accurately select the regions which require finer resolution.
Regions are usually selected on the basis of certain flow features [12,13,7]. For the present
work, velocity gradients and velocity differences are the flow feature parameters used to

Figure 5. Numerical error distribution in the grid for calculation of the divergence of a linear analytic function around
a sphere. - - -, Prismatic mesh; — hybrid mesh.

Figure 6. RMS error versus radial step size for the divergence and viscous calculations on a semi-unstructured
prismatic sphere mesh. Second-order accuracy is observed. �, Divergence calculation; �, viscous calculation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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determine where local embedding should occur. The variation in the flow parameters across
the edges is monitored during the adaptive computation. The mean and standard deviation of
the flow parameters across the edges are calculated for the entire flow field. If the value of the
detection parameter 8 at a particular edge is greater than the corresponding average value plus
a fraction of its standard deviation, the edge is flagged for embedding, 8threshold=8mean+a8sd.
This fraction, a, is called the threshold parameter and is determined by numerical experimenta-
tion. Additional information on this hybrid adaptation method can be found in Reference [7].

5. RESULTS

Four different geometries are considered, namely a cubic cavity, a sphere, two spheres in
tandem and a circular cylinder. Different meshes are employed in order to compare accuracy
and to test the robustness of the method. These adaptive grids include all-prisms, hybrid, as
well as globally fine meshes.

5.1. Flow in a dri6en cubic ca6ity

Steady flow within a driven cubic cavity at Re=400 is modeled. The lid (at z=1.0) is
moving with a steady velocity in the positive x direction, driving the flow. Due to flow
symmetry, only half the cubic cavity is actually modeled. No artificial dissipation was used in
this case. The grid had 2500 faces on the bottom wall with 50 prismatic layers to the top
moving wall.

Velocity contours of the flow on x–z planes at y=0.015 and y=0.5 are shown in Figure 8.
The velocity contours do not show the presence of small vortices in the corners of the cavity,
however, velocity vector plots, which are not shown, indicate the vortices are present. Two
velocity profiles on the symmetry plane of the cubic cavity are plotted for comparison with
numerical data by Babu [14]. Figure 9 shows the u velocity versus the z co-ordinate at x=0.5,
and Figure 10 shows the w velocity versus the x co-ordinate at z=0.5. Both plots show that
the present work compares well with the numerical data from the literature.

Steady flow in the previously described cubic cavity at Re=400 is calculated using coarse,
adapted and globally adapted prismatic grids. All three grids have 50 prismatic layers. The
number of surface faces are 994, 3068 and 3976, for the coarse, adapted and globally adapted
meshes, respectively. The adapted grid was obtained from the coarse grid using the solution
after 5000 iterations. No artificial dissipation was used. Figure 11 shows the signature of
directional embedding of the prisms. Note that the plane shown in Figure 11 corresponds to
the x–y plane of the cubic cavity in Figure 8. It is observed that the embedding is focused near
the side walls of the cavity. This is due to flow deceleration near the wall boundaries. The
boundary which is not totally adapted is the symmetry plane.

The w velocity versus the x location, on the symmetry plane of the cubic cavity at z=0.5,
is plotted in Figure 12. It shows that the coarse grid gives a poor solution for the w velocity,
yet the locally adapted grid yields the same accuracy as the globally adapted grid. In this test
case, there is 55% CPU time savings using the locally adapted grid for the same solution
accuracy.

5.2. Flow around a sphere

Steady flow around a sphere is calculated for several Reynolds numbers on prismatic
meshes. All the grids had 1346 triangles on the surface and used a radial stretching factor of

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Figure 7. Local surface grid embedding for prismatic cells: shaded regions illustrate division into two (binary) and
four (quad) surfaces.

Figure 8. Velocity contours on the x–z planes in the cubic cavity at Re=400, at y=0.015 and 0.5. Contour lines are
plotted with velocity increments equal to 0.025. The cavity lid is the top surface and is moving obliquely from right
to left. The grid mesh on the bottom wall is shown, with the clustered points near walls. The grid mesh on the x=0

side wall and the y=0 side wall are also shown.
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1.1. The convergence criterion for the maximum residual in the x-momentum equation was
10−5. The artificial dissipation factor was equal to 10−4.

The pathlines around the sphere are illustrated for the case of Re=200 in Figures 13 and
14. Two orthogonal plane cuts are shown to illustrate the presence of the ring eddy on the rear
of the sphere.

The drag coefficient variation with Reynolds number is compared with previous experiments
[15,16] in Figure 15. The drag coefficient is defined by Cd=Drag/(1/2) r�U�2 A, where A is the
frontal area of the sphere (pr2). The figure also shows the analytic solutions for Stokes and
Oseen flows. It is observed that the numerical result agrees quite well with the experiments.

Figure 9. U velocity profile versus z on the symmetry plane at x=0.5 for the driven cubic cavity flow at Re=400.
�, Numerical result by Babu; —, present work (locally adapted grid).

Figure 10. W velocity profile versus x on the symmetry plane at z=0.5 for the driven cubic cavity at Re=400. �,
Numerical result by Babu; —, present work (locally adapted grid).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Figure 11. Signature of the prisms adaptation on the bottom wall (x–y plane) of the driven cubic cavity at Re=400.
Surface grid shows embedding near the cavity walls.

Figure 12. Effectiveness of grid adaptation. Comparison of the w velocity profile versus x on the symmetry plane at
z=0.5 for the driven cubic cavity at Re=400. – –, Coarse grid; - - - -, locally adapted grid; —, globally fine grid.

The effect of the interface between the prisms and the tetrahedra on the solution is examined
with flow around the sphere at Re=100. The prismatic region was reduced so that the
separation bubble would no longer lie solely in the prism region. Figure 16 shows the pathlines
around the sphere. It is observed that the pathlines are smooth across the interface. Figure 17
illustrates the pressure coefficient contours on the symmetry plane. The contours are relatively
smooth across the interface. The change of topology of the grid (prism–tetrahedra interface)
has little effect on the solution.

Hybrid mesh adaptation is demonstrated for steady flow over a sphere at a Re=100. The
globally fine mesh is created by refining all the prisms of the coarse grid. The initial coarse
hybrid grid, the locally adapted, as well as the globally fine mesh consist of 36 layers of prisms,
with the grid step size at the wall being 0.01, and the stretching factor is 1.1. The number of
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prism–tetrahedral cells for the coarse, adapted, and globally fine meshes were 11 952/35 063,
39 420/59 401 and 47 808/59 796, respectively. The artificial dissipation factor was set at 10−4.

The adapted grid is shown in Figure 18 along with velocity contours around the sphere. The
figure shows the tessellation on the wall surface and symmetry plane. Embedding in the
tetrahedral region is focused at the rear of the sphere. The prismatic region is also directionally
refined near the upstream and downstream sections of the body. This is due to the flow
accelerating from the upstream stagnation point and the flow separating in the aft part of the
sphere. These occurrences cause significant flow gradients in the lateral directions which are
detected by the directional adaptive algorithm. The third plane cuts through the interior of the
grid, normal to the symmetry plane. Despite the drastic changes in topology at the interface,
the contour lines across it are relatively smooth. Figure 19 shows the pressure coefficient
contours on the symmetry plane. The pressure field contours are also smooth across the
prismatic–tetrahedral interface.

The distributions of the pressure coefficient and the vorticity on the surface along the
equatorial plane are shown in Figures 20 and 21. The pressure coefficient solution for the
adapted mesh and the fine mesh are nearly identical. However, the vorticity distribution
corresponding to the adapted and fine meshes have some differences near u=60 degrees where
embedding has not occurred.

Robustness of the hybrid adapter is demonstrated in Figure 22. The maximum residual of
the x-momentum equation is plotted versus time for the locally adapted and globally adapted

Figure 13. Pathlines on the x–z plane near a sphere at Re=200.

Figure 14. Pathlines on the x–y plane near a sphere at Re=200.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Figure 15. Drag coefficient on a sphere versus Reynolds number. Tick at lower right represents error range of
experimental data. – - –, Stokes flow; - - - -, Oseen’s equation; —, experimental data [7,15]; �, present work.

Figure 16. Effect of prism–tetrahedra interface on the solution. Pathlines near a sphere corresponding to flow of
Re=100 are unaffected by the change in topology of the grid.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Figure 17. Effect of prism–tetrahedra interface on the solution. Pressure contours near a sphere for Re=100 are
relatively unaffected by the change in topology of the grid.

Figure 18. Adapted hybrid mesh and corresponding flow velocity contours for sphere at Re=100. A view of the
tessellation on the wall surface, symmetry plane and an interior equatorial plane. The hybrid grid is embedded

isotropically in the tetrahedral region and directionally in the prismatic region.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Figure 19. Adapted hybrid mesh and pressure coefficient contours for sphere at Re=100. A view of the tessellation
on the wall surface and symmetry plane. The hybrid grid is embedded isotropically in the tetrahedral region and

directionally in the prismatic region.

Figure 20. Pressure coefficient distribution on the surface of a sphere, at the equatorial plane, with a hybrid adapted
mesh for Re=100. - – -, Coarse grid; - - -, locally adapted grid; —, fine grid (globally adapted prism region).
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A.J. CHEN AND Y. KALLINDERIS1102

cases. The spike in Figure 22 is due to the linearly interpolated solution from the initial coarse
grid nodes to the newly created ones following adaptation. The locally adapted grid yields the
same result as the globally fine with 40% less CPU time.

Figure 21. Vorticity distribution on the surface of a sphere, at the equatorial plane, with a hybrid adapted mesh for
Re=100. - – -, Coarse grid; - - -, locally adapted grid; —, fine grid (globally adapted prism region).

Figure 22. Demonstration of robustness of the adaptive hybrid mesh solver. Convergence history corresponding to
flow around a sphere at Re=100. The spike is due to the linearly interpolated solution from the initial coarse grid

nodes to the newly created nodes following adaptation. - - -, locally adapted grid; —, globally fine grid.
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Figure 23. Adapted hybrid grid and flow velocity contours for tandem spheres at Re=100. A view of the tessellation
on the wall surface, symmetry plane and an interior equatorial plane. The hybrid grid is embedded isotropically in the

tetrahedral region and directionally in the prismatic region.

Figure 24. Growth in time of the length of the separation bubble for an impulsive start of a cylinder with Re=40.
�, Experiment by Coutanceau [17]; �, experiment by Honji [18]; —, present work.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1085–1105 (1998)
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Employment of hybrid grids offers geometric flexibility. This is demonstrated in the case of
a multiply-connected domain consisting of two spheres. An adaptive hybrid mesh is used to
simulate the steady flow of Re=100 around two spheres in a tandem (in-line with the flow)
arrangement. The surface triangulation and symmetry plane of the hybrid grid are shown in
Figure 23, as well as the flow velocity contours. The prismatic region shows directional
adaptation on the fore and aft portions of both spheres. Embedding in the tetrahedral region
is focused at the rear of the second sphere as well as the region between the two spheres. The
presence of prismatic–tetrahedral grid interfaces did not affect the solution contours.

5.3. Impulsi6e start of a cylinder

Impulsive start of a circular cylinder which attains a steady speed corresponding to a
Reynolds number of 40 is simulated with a prismatic mesh based upon an unstructured surface
mesh of 1604 triangles. There were 111 layers in the prismatic mesh. Symmetry planes were
defined at both ends of the cylinder. The artificial dissipation factor was equal to 10−4 and the
CFL factor was 0.1.

The initial condition of the impulsive start simulation is potential flow [1]. The growth of the
length of the separation bubble in time is shown in Figure 24. Experimental results from
Coutanceau [17] and Honji [18] are shown for comparison. Results from the present work
match the unsteady portion of the data, however, they slightly underpredict the length of the
steady state value of the separation bubble. Note, however, that the experimental results also
show a significant variation in the steady state value of the separation bubble size. Other
numerical results [19] report a slight decrease in the steady state value of the separation bubble
as the grid is refined. The present work found a similar trend.

6. CONCLUDING REMARKS

Employment of hybrid (prismatic–tetrahedral) grids yielded stable and accurate solutions of
the incompressible Navier–Stokes equations, as demonstrated by driven cavity flow, flow over
a sphere, and an impulsively started cylinder. Accuracy of the solution was not affected by the
presence of prisms–tetrahedra interfaces. Solutions for the driven cavity, obtained with locally
adapted grids, were basically the same as solutions yielded by the corresponding globally fine
meshes. The case of the two spheres in tandem demonstrated the geometric flexibility offered
by the hybrid mesh. Finally, employment of fourth-order smoothing with non-staggered grids
instead of the more traditional approach of using the more complex staggered meshes, proved
to yield non-oscillatory solutions.
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